If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4x^2-8x+9=0
a = -4; b = -8; c = +9;
Δ = b2-4ac
Δ = -82-4·(-4)·9
Δ = 208
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{208}=\sqrt{16*13}=\sqrt{16}*\sqrt{13}=4\sqrt{13}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-4\sqrt{13}}{2*-4}=\frac{8-4\sqrt{13}}{-8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+4\sqrt{13}}{2*-4}=\frac{8+4\sqrt{13}}{-8} $
| -74.7y-16.2=-281.136-4.98y | | 12x+2(x+10)=60 | | x/(100-x)=0.4 | | 67.2=6(m+2.3) | | x(1-x)=0.4 | | –1+–2y=11 | | 5(2x+4)+2(x+3)=74 | | -7x-2=44-9x | | 3x+2x+.5x=100 | | 3^2x-4.3^x+45=0 | | k3+ 3=1.5 | | -k/2(2k-15)+5(3k/2-0)=0 | | 20x+12=4x+4 | | 52-3x=360 | | a=0.680^2 | | 26=3v+8 | | 4(24+x)=60 | | 5=-7+y/4 | | x-0.10x=160 | | 1.5/x=4/12 | | (9x+5)=+(7x-1)=180 | | (9x+5)=+(7x-1) | | -0.25x=9 | | -1.5x=-30 | | 30-19=g+7 | | -13-4y=23 | | 66+m=33 | | –4(s+19)=–16 | | 2x-5=3(x-1 | | (9x-19)=(35 | | -x^2+100x-979=0 | | 180=112+2x-20 |